Diffusion in the presence of cylindrical obstacles arranged in a square lattice analyzed with generalized Fick-Jacobs equation.

نویسندگان

  • Leonardo Dagdug
  • Marco-Vinicio Vazquez
  • Alexander M Berezhkovskii
  • Vladimir Yu Zitserman
  • Sergey M Bezrukov
چکیده

The generalized Fick-Jacobs equation is widely used to study diffusion of Brownian particles in three-dimensional tubes and quasi-two-dimensional channels of varying constraint geometry. We show how this equation can be applied to study the slowdown of unconstrained diffusion in the presence of obstacles. Specifically, we study diffusion of a point Brownian particle in the presence of identical cylindrical obstacles arranged in a square lattice. The focus is on the effective diffusion coefficient of the particle in the plane perpendicular to the cylinder axes, as a function of the cylinder radii. As radii vary from zero to one half of the lattice period, the effective diffusion coefficient decreases from its value in the obstacle free space to zero. Using different versions of the generalized Fick-Jacobs equation, we derive simple approximate formulas, which give the effective diffusion coefficient as a function of the cylinder radii, and compare their predictions with the values of the effective diffusion coefficient obtained from Brownian dynamics simulations. We find that both Reguera-Rubi and Kalinay-Percus versions of the generalized Fick-Jacobs equation lead to quite accurate predictions of the effective diffusion coefficient (with maximum relative errors below 4% and 7%, respectively) over the entire range of the cylinder radii from zero to one half of the lattice period.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Ising model and critical behavior of transport in binary composite media

Related Articles Diffusion in the presence of cylindrical obstacles arranged in a square lattice analyzed with generalized FickJacobs equation J. Chem. Phys. 136, 204106 (2012) Lattice cluster theory of associating telechelic polymers. III. Order parameter and average degree of selfassembly, transition temperature, and specific heat J. Chem. Phys. 136, 194902 (2012) Discontinuous phase transiti...

متن کامل

Dispersion and Deposition of Micro Particles over Two Square Obstacles in a Channel via Hybrid Lattice Boltzmann Method and Discrete Phase model

Dispersion and deposition of aerosol particles over two square cylinders confined in a channel in laminar unsteady vortical flow were investigated numerically. Lattice Boltzmann method was used to calculate fluid characteristics and modify Euler method was employed as Lagrangian particle tracing procedure to obtain particle trajectories. Drag, Saffman lift, gravity, buoyancy and Brownian motion...

متن کامل

Biased diffusion in confined media: test of the Fick-Jacobs approximation and validity criteria.

We study biased, diffusive transport of Brownian particles through narrow, spatially periodic structures in which the motion is constrained in lateral directions. The problem is analyzed under the perspective of the Fick-Jacobs equation, which accounts for the effect of the lateral confinement by introducing an entropic barrier in a one-dimensional diffusion. The validity of this approximation,...

متن کامل

Three-dimensional Free Vibration Analysis of a Transversely Isotropic Thermoelastic Diffusive Cylindrical Panel

The present paper is aimed to study an exact analysis of the free vibrations of a simply supported, homogeneous, transversely isotropic, cylindrical panel based on three-dimensional generalized theories of thermoelastic diffusion. After applying the displacement potential functions in the basic governing equations of generalized thermoelastic diffusion, it is noticed that a purely transverse mo...

متن کامل

Introduced a Modified Set of Boundary Condition of Lattice Boltzmann Method Based on Bennett extension in Presence of Buoyancy Term Considering Variable Diffusion Coefficients

Various numerical boundary condition methods have been proposed to simulate various aspects of the no-slip wall condition using the Lattice Boltzmann Method. In this paper, a new boundary condition scheme is developed to model the no-slip wall condition in the presence of the body force term near the wall which is based on the Bennett extension. The error related to the new model is smaller tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 136 20  شماره 

صفحات  -

تاریخ انتشار 2012